Source code for k_means
"""K-means module."""
import random
[docs]def cluster(k, d, data, i_centers=None):
"""Find *k* clusters on *d* dimensional *data*."""
if i_centers:
old_centers = i_centers
else:
borders = [(min(p[0][i] for p in data), max(p[0][i] for p in data))
for i in range(d)]
old_centers = [[(h - l) * random.random() + l for (l, h) in borders]
for _ in range(k)]
clusters, centers = next_step(old_centers, data)
while delta(old_centers, centers) > 0:
old_centers = centers
clusters, centers = next_step(old_centers, data)
dst = lambda c, p: sum((a - b) ** 2 for (a, b) in zip(p, c)) ** 0.5
score = sum([sum(map(lambda p: dst(c, p[0]), clus)) for clus, c in
zip(clusters, centers)])
return clusters, score
[docs]def next_step(centers, data):
"""Compute new clusters and centers."""
clusters = [[] for _ in centers]
for point in data:
clusters[nearest(centers, point)].append(point)
centers = [centroid(c) for c in clusters]
return clusters, centers
[docs]def nearest(centers, point):
"""Find the nearest cluster *center* for *point*."""
d, i = min(((sum((p - c) ** 2 for (p, c) in zip(point[0], center)) ** 0.5 ,
index) if center else (float('inf'), len(centers)))
for (index, center) in enumerate(centers))
return i
[docs]def centroid(cluster):
"""Find the centroid of the *cluster*."""
# TODO is this just a mean of coordinates?
# TODO should we try different definitions?
l = float(len(cluster))
try:
d = len(cluster[0][0]) #TODO empty cluster error
except IndexError:
return None
return [sum(c[0][i] for c in cluster) / l for i in range(d)]
[docs]def delta(c1, c2):
"""Find the absolute distance between two lists of points."""
# TODO rewrite this to a sane form
return sum((sum(abs(cc1 - cc2) for (cc1, cc2) in zip (ccc1, ccc2)) if ccc2
else 0.) for (ccc1, ccc2) in zip(c1, c2))