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Introduction

The game of Go

The game of Go is an ancient board game, originating in China. It was first
mentioned in Chinese writings from Honan dating from about 625 B. C. (Bell,
1979).

It is traditionally played with black and white stones on wooden board called
Goban. There is a square grid on the board, traditionally consisting of 19 x 19
lines. During the game, stones are placed on the intersections. Smaller boards
are used for beginners (usually 13 x 13 or 9 x 9 lines).

Figure 1: A game of Go in progress.

Two players take turns in placing a stone on the board. Once the stone is put
down on the board, it does not move. It can however be removed from the board
(“captured”). The goal of the game is to control more territory than the opposing
player. Because the rules of the game are not directly relevant to our work,
we refer interested reader to literature (e.g. lwamoto, 1972) for comprehensive
description of the rules. The rules can also be found on the internet, for example
on Sensei’s Library' or Wikipedia®.

Recording the game

The traditional game record (called kifu in Japanese) is handwritten on a special
form with a grid. The number of each move is written on the location where it
was played. Two pens of different color are usually used — one for each player’s

http://senseis.xmp.net/?Rules0fGo
2http://en.wikipedia.org/wiki/Rules_of_Go
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moves — to make the game record easier to read. Any mistakes in a handwritten
record are hard to correct.

Today, computers, tablets or smartphones can be used to record the game.
This facilitates the recording, because mistakes are easily corrected and the result-
ing game record can be displayed conveniently. But it still distracts the recording
player from the game.

Outline of this thesis

In this thesis, we examine possibilities of automatic optical game position recog-
nition in Go. We implement a system that enables players to record their game
easily, with just a (web)camera and a computer. The recording is fully automatic
and does not distract the player from the game. It is reliable and the resulting
game record can be easily displayed and edited in any Go editing program.

In Chapter 1 we introduce basic notions of perspective geometry, color theory
and we describe algorithms that are used later on. In Chapter 2 we give a detailed
overview of the problem of optical recognition of Go positions. In Chapter 3 we
survey related academic works and currently available Go recording software. We
describe our method of game position recognition in Chapter 4 and the applica-
tion based on it in Chapter 5. We evaluate performance of our application in
Chapter 6.



1. Theory and algorithms

In this chapter we explain some basic theoretic notions and algorithms that will
be used in following chapters.

1.1 Perspective

If we took a picture of a square grid with a camera parallel to the grid and posi-
tioned directly above its center, the image would contain a square grid. Because
we do not want to impose such conditions on users of our program, we have to
deal with the image of a perspectively transformed square grid. Traditional Go
boards also take this into consideration, so the grid is in fact rectangular, to
appear square for a player sitting next to it and looking at an angle.

When reasoning about perspective transformation, we assume three-dimen-
sional scene to be projected on a two-dimensional plane through a single point
(called the focus point).

For each set of lines in the scene that are parallel to each other, we have a set
of lines in the image that all meet at common point. This point is called the
vanishing point. When the lines are also parallel to the projection plane, the van-
ishing point lies in infinity. This is motivation for introducing projective geometry,
but for our purpose vanishing points in standard vector space are sufficient.

Depending on number of vanishing points in the image we distinguish one- or
two- point perspective. Perspective with more vanishing points are common, but
since we are only interested in board-grid consisting of two sets of parallel lines,
they are irrelevant to us.

Important property of the perspective transform is that it preserves lines. This
means that a line in the scene is projected onto a line in the image, the intersection
of two lines in the scene is projected onto a intersection of corresponding lines
in the image, and so on. We can use this to derive relations such as that if we
connect the corners of the board in the image, we get the center of the board at
the intersection of diagonals. This can be used to compute all the intersections
in the grid just from the coordinates of the corners of the grid in the image.

For more information on the use of perspective in computer vision, we refer
the reader to ( : ).

1.2 Color spaces

A color space is an abstract mathematical model describing a way to represent
colors as vectors of numbers. The most common color space for storing and
manipulating images is RGB. This is because both computer screens and digital
camera sensors use red, green and blue channels for displaying and recording
images. Human eye also contains three kinds of cone cells that respond to red,
green and blue light.

RGB has no direct semantic interpretation. For image analysis, we might
want to use a different color space. Examples of such color spaces include HSL



and HSV ( , ). These spaces consist of hue, saturation,
and lightness/value, which are easier to interpret than RGB values.

To obtain a gray-scale image from a polychromatic one, we use luminance. It
comes from the YUV color space and its variants, which are mostly used in video
encoding. The luminance is defined as Y = 0.2126 R + 0.7152G + 0.0722B. This
reflects the fact that green light contributes the most to human visual perception
of intensity, and blue light the least. Digital cameras usually have better resolu-
tion in the green channel, so it makes sense to give the biggest weight to green in
image analysis as well.

1.3 Hough transform

The Hough transform for lines was introduced by ( ), building
on a previous work by ( ).

We detect lines in the image by transforming it to the Hough space. A point
in the Hough space corresponds to a line in the original image. FEach line is
represented by its angle and distance from the center of the image. The Hough
transform works on gray-scale images. Therefore every point in the image has
just one value (we will refer to it as intensity). Every point in the Hough space
— specified by the two parameters of the corresponding line — has just one value
as well. The Hough transform is a simple voting algorithm. Every point P in the
image votes by adding its intensity to the intensity of every point in the Hough
space that corresponds to a line that P lies on. Consequently, intensity of a point
in the Hough space represents cumulative intensity of the corresponding line in
the image. Peaks in the Hough space then indicate distinct lines in the image.

Algorithm 1 Hough transform
function HOUGH_TRANSFORM (img)
function DisT((x, y), 6)
L is the line going through point [z, y| at angle 6
d <z -cos(0) +y - sin(0) > distance of L from the origin
return ROUND(d)

m <— zeroes
for z,y < (0,0), size(img) do
if img[z,y] > 0 then
for a + 0,7 do > take angles between (0 and 7 with some step
d < Dist((z,y), a)
mla, d] < mla, d] + imgx, y]

return m

As described so far, Hough transform would be a continuous function. In
practice, we naturally compute only a discrete sample from it. Because the input
image is also discrete, we have to reasonably define the relation of lying on a line.
We solve this by considering only a subset of angles for lines (uniformly sampled
with some step). When computing on which lines does point P lie, we compute
the distance d for every angle a such that a line going through P at angle « is
in the distance d from the center of the image. The distance is then rounded to



the nearest point in the discrete Hough space. We use angles from 0 to 7 and
negative distance, so all parallel lines have the same angle but different distance.
For the pseudocode, see Algorithm 1. See figures 4.2 and 4.3 for an example
of an image and its Hough transform.
( ) improved the Hough transform by using local
gradient to reduce the number of useless votes and computation time. The Hough
transform was further generalized to detect arbitrary shapes by ( ).

1.4 RANSAC

The RANSAC (RANdom Sample And Consensus) algorithm was first introduced
by ( ). It is a stochastic method for estimation of the
parameters of a model from data contaminated by large amount of outliers.
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Figure 1.1: RANSAC estimate of a linear model. Dataset consists of all the dots,
red line shows the model estimated by the least squares method, blue line shows
the Theil-Sen estimate, green line shows the model estimated by RANSAC (with
consensus set consisting of green dots).

We will illustrate the RANSAC process with an example of a linear model.
Suppose we have some data generated from a linear model with Gaussian noise
(e.g. green dots in Fig. 1.1). We would like to estimate the parameters of the
model. In this case, we can just use the least squares method (the green line in
Fig. 1.1) to estimate the parameters of the model.

Now we take the data generated from the same model, but this time with
outliers (blue dots in Fig. 1.1). The outliers are distributed arbitrarily, therefore
we cannot expect their deviations from the model to cancel out. As you can see,
there can be quite a lot of outliers, but the line can still be distinguished. This
time, the least squares (red line in Fig. 1.1) are quite off. Theil-Sen estimate



(Sen, ) is better, but still not good enough (blue line in Fig. 1.1). This is
where RANSAC helps.

Algorithm 2 RANSAC algorithm
procedure RANSAC(data, distance, threshold, max_iter)
best < {}
10
while |best| < threshold and i < max_iter do
consensus < RANDOM_SAMPLE(data)
c+0
while ¢ < |consensus| do
¢ < |consensus|
model < ESTIMATE(consensus)
consensus < FILTER(model, data, distance)

if |best| < |consensus| then
best < consensus
141+ 1
return best

In each RANSAC iteration we randomly select exactly enough datapoints
to determine the parameters of the model (2 datapoints in the two-dimensional
linear case). Then we check all the datapoints against this model. We create
a so called consensus set, consisting of datapoints that are closer than d to the
model (d is a parameter). We assume that the consensus set consist of inliers,
therefore we can use e.g. least squares method to create a new estimate of the
parameters based on the consensus set. We create a new consensus set for the
new model. We continue with re-estimating the model (based on the consensus
set) and recomputing the consensus set (based on the model) until the consensus
set stops growing. For common models and estimators, this part can be regarded
as an instance of EM algorithm.

We repeat the whole cycle of randomly sampling the data and improving
the model, until we find a suitable solution or reach a predetermined number of
iterations. In Figure 1.1 we end with consensus set consisting of green dots and
the corresponding model is visualized by the green line.

If we have an apriori estimate of the ratio of outlier and inliers,

( ) give an estimate on number of iterations needed to achieve selected
probability of finding the correct consensus set.

There are many variations to the RANSAC algorithm. One important mod-
ification is MSAC ( , ), where the inliers are scored by
their fitness to the model and outliers are given constant weight. This does not
present any computational overhead, but it can lead to better results. Another
modification is MLESAC ( : ), where the consensus set is
scored by its likelihood, instead of its cardinality.

For more information on RANSAC we recommend an excellent guide written

by (2014).



2. Analysis of the problem

In this chapter we analyze various potential solutions to the problem of optical
position recognition in Go. In Section 2.1 we provide an overview of the problem
and discuss the assumptions we make about the input. In sections 2.2 through
2.5 we examine individual stages of the game position recognition.

2.1 Overview

There are many features that we can use to find the board in the image. Human
brains probably use many of them simultaneously. We could for example cluster
the pixels of the image by their distance in color space. This would work in
many cases, except for a fairly common situation of wooden board on a wooden
table. The most reliable system would combine all of these features in order to
work in any conceivable conditions. Unfortunately, because we are working with
image data, the computations for such a system would take intolerable amount
of resources. We need to carefully select what features we use in order to balance
reliability with speed, if we want to build a system that is effectively usable.

This differs from general pattern recognition tasks in that we can exploit the
geometric properties of the grid. In following paragraphs, we present various
possibilities to do so.

2.2 Finding the grid

First step of the position recognition is locating the grid. We could try to locate
the board and restrict the search for the grid to the appropriate area of the image,
but this not necessary.

To simplify the analysis, we assume that there are no stones on the board.
We deal with stones in the last paragraph of this section.

Detecting the edges To lower the amount of noise in subsequent stages of
recognition, we might detect edges in the image and use them instead of the
original image. We assume that the grid consists of dark lines on light background,
therefore we can use a simple filter to detect edges. The filter approximates the
Laplacian of the image, by computing a convolution sum with the following mask
(so called Laplace operator):

1 1 1
L=|1 -8 1
1 1 1
There are many other methods for edge detection, see ( , ) for

a survey.

Finding the lines We find the edges. Then we use the Hough transform.
Peaks in the Hough space correspond to strong lines in the image. Now we need
to find the lines that belong to the grid.



Points representing lines that are parallel in the scene lie almost on a line in
Hough space. They actually lie on a sinusoid, as lines that are parallel in the scene
intersect at a vanishing point in the image plane and each point in the image is
projected on a sinusoid in Hough space. But if we assume that we see the board
under reasonable angle, then the vanishing point is far away from the center of
the image, therefore the sinusoid formed by the vanishing point in the Hough
space has a large amplitude (z or y are large in d = x - sin(0) + y - cos(#)). We
are interested only in values relatively close to zero, because lines corresponding
to larger values are out of the image. And the part of the sinusoid that is near
the zero can be safely approximated by linear function.

Therefore we can easily find the two sets of lines that are parallel in the scene
and form the grid, as they lie on two lines in Hough space. Some lines might be
missing and we will usually find some extra ones (e.g. edges of the board).

Perspective We can use properties of perspective to try to find the grid an-
alytically. If we assume two-point projection, we can find vanishing points for
both sets of lines. They determine the horizon line. Intersections of grid-lines
with any line parallel to the horizon are evenly spaced on the horizon-parallel
line. The Fourier transform can be used to find the strongest frequency, which
corresponds to the spacing of the grid-lines. Once we have the spacing, its easy
to select a grid that maximizes the likelihood of observed lines.

There are also images, that are closer to one point perspective. Those can be
analyzed similarly. For images with no point perspective (camera parallel to the
board) the analysis is even simpler.

Finding the grid by minimization The problem of locating the grid in the
image can be modeled as a minimization problem. To do so, we need to choose
a method for generating candidates for the grid and a function to minimize.

Selecting the parameters is important part of the minimization formulation.
The more information we can get from the analysis of the image (e.g. angles of the
lines from the Hough transform), the less parameters we need. The less param-
eters we use, the faster the computation. On the other hand, if the information
used to restrict the search space was inaccurate or even wrong, it prevents us
from reaching the correct solution.

If we parametrize on positions of the corners, we have eighth parameters. If we
consider the position of the camera relative to the board, we have six parameters.
We can estimate the angles of lines from the Hough transform and take only their
distance from the center of the image as parameters (then we have four).

Next we need to choose a cost function. The cost function can compare the
candidate to the edges detected in the image, to the lines detected from the edges
or their intersections. The first approach seems to be the most reliable, but it is
also the most computationally demanding.

In any configuration, this is quite costly to compute. The problem is in its
essence non-convex with many local minima (e.g. the position with grid shift-
ed by one line). Therefore we cannot use gradient descent and must resort to
stochastic optimization method such as Particle Swarm Optimization (

: ) or Cuckoo Search ( : ).



Selecting the lines We can try to build the grid from the lines that we found
by the Hough transform. We must somehow deal with some extra lines and
some grid-lines missing. Exploring all possible combinations is computationally
expensive. But we can employ a RANSAC-inspired approach: select two lines in
each direction at random, try various configurations of the grid (each of selected
lines being interpreted as first, second, third, ..., line of the grid), repeat this
a few times, pick the best candidate. The score of the candidates can be any of
the functions mentioned in previous paragraph.

Finding the center Another method is based on finding the center and di-
agonals of the grid first. Once we have the center and angles from the Hough
transform, the grid is determined by just two corners. We can further narrow this
down by finding the diagonals of the grid first. Because diagonals go through the
largest number of intersections (except for the lines that we already have), they
can be found with RANSAC.

Polygons Instead of finding lines in the image, we can try to detect polygons.
We assume that most of the polygons in the image will be on the board and they
will all be roughly the same size in the perspective projection. Therefore we can
find the median distance and discard all polygons that deviate from it too much.
Then we take the convex hull of the remaining polygons and we should end up
with the grid.

Corners and intersections There are extensions to the Hough transform for
finding the corners and intersections of lines ( : ). This
could be used to find the intersections. The result would not contain false inter-
sections, that we get when simply computing intersections of lines found by the
Hough transform.

Stones on the board Detecting lines with Hough transform works even with
stones on the board. With too many stones on the board, the lines get obscured
and harder to detect. Rules of Go allow the board to be almost completely filled
with stones. In that case we would need to detect stones instead of lines. Hough
transform for circles could be used for that. But the board is highly unlikely to
get completely covered in a real game. In Figure 2.1 we see two finished games
with lines detected by the Hough transform. Some lines are missing, but there
are clearly enough lines to find the grid.

2.3 Finding the stones

When detecting stones, we can ignore the perspective transformation. Under any
reasonable angle, Go stones are projected as roughly circular shape, either black
or white.

Based on color If we know the position of the grid, the simplest approach is
to detect stones by their color. We can quantize the colors — select the nearest
(black, white or brown) for each pixel — and then pick the most frequent one. Or

10



Figure 2.1: Finished games with lines found by Hough transform.

we can take the area around an intersection and compute average or median color.
Because of variable lighting conditions, it is not possible to set hard boundaries
to classify the colors. Instead, we need to cluster them. K-means clustering
(Hartigan, 1975) is sufficient for this, although other variants of EM clustering
might be more reliable, because the clusters differ in size significantly (at least in
the beginning of the game).

Based on shape We can use shapes to detect if there is a stone on the inter-
section. Deciding if the stone is black or white is then straightforward. Hough
transform can be used to detect circles. If we have the position of the grid, we
can run the transform only around intersections. Complementary approach is to
detect empty intersections (dark crosses on light background). Both methods can
be combined.

Machine learning Another possibility would be to cut a square around each
intersection from the image and use machine learning methods to train a classifier.
This would work best if it was trained for a particular setup (camera, board,
lighting conditions, etc.). It would require a large and very diverse training set
to make this sufficiently general.

2.4 Sequences of images

In the game of Go, exactly one stone is added on the board in every move (al-
though multiple stones can be removed). If we had exactly one image of the
board for every move and a perfect program for analyzing a single image, the
task of finding the one added stone would be trivial. The stones to remove would
then be determined by the rules of Go.

In practice, we do not have a perfect program for single images. Some images
will be interpreted incorrectly. We need to consider the relation between images
to deal with this. We can regard the images as observations of a hidden Markov
model (HMM), as suggested by Scher (2006) and later developed by Scher, Crabb.
and Davis (2008).

If we regard the state of the game as a HMM, and the images as observations,
we can set the parameters of the model in such a way that it filters out the errors

11



in image analysis. For short games or smaller boards, the Viterbi algorithm
( , ) can be used to find the most probable order of the moves given
the observations. For complete games on a 19 x 19 board, the state space is too
large for an exhaustive search and we need to heuristicaly prune it.

2.5 Video

To analyze a video recording, we can just treat it as a sequence of images. It would
be beneficial to detect and discard frames containing object (such as player’s
hand) moving over the board. This can be easily achieved by computing the
difference between consecutive images.

If we end up discarding too much frames (e.g. in a recording of a blitz game,
when players are constantly moving their hands over the board), we can use
optical flow estimation ( , ) to find areas of strong movement. We
then restrict our analysis to the static regions of each frame. Partial observations
are sufficient for HMM estimation.

There is also a question of analyzing a live video stream (e.g. for broadcasting
an important tournament game over the internet). The software built for this
task needs to be very fast as well as reliable. The precision of such a system
would be reduced by the fact that it would only know about past observations
and could not alter its decisions in situations such as detecting a conflict with
the rules and deciding that one of the past observations was flawed.

12



3. Related works

In this chapter we provides an overview of relevant academic work and currently
available software.

3.1 Academic work

Optical recognition of Go position is an uncommon topic in academic writing.
Only recently there has been a few papers published, the oldest we found dating
from 2004.

None of the works mentioned below has publicly available working implemen-
tation.

( ) describes AutoGoRecorder, an application for live
recording of Go games and record database management. It finds the board
at the beginning of the recording and assumes the position does not change.
The camera must be positioned directly above the board. The average color in
HSV color space measured in circular area around intersection is used to detect
stones. Movement detection is used to select the frames in which the board
should be checked for changes. There is no evaluation of the performance and
the application itself is not available.

( ) presents a system based on machine learning methods. The
corpus of images on which the system is trained and evaluated was created with
a custom 8 x 8 board. There is no reason to assume that this approach can work
for other users, unless everyone creates their own dataset and trains their own
classifier specifically for their board and camera.

( ) proposes a method to improve a weak single-image classifier by
taking the whole sequence of images into account. The images are treated as
observations of states of a Hidden Markov Model. The Viterbi algorithm is used to
find the most probable sequence of states. This approach can be used to improve
any system that works on single images. This method can be further developed
by using the A* algorithm to search the space of possible move sequences (

, 2008).

( ) and ( ) both propose
algorithms to extract game records from Go TV shows. Both works rely on the
assumption that the video is recorded with a camera positioned directly above
the Go board. This means that there is no perspective transformation and ver-
tical lines on the board are also vertical in the image (and the same holds for
horizontal lines). This is a standard setup in TV broadcast of Go events, but its
use anywhere else is very limited. It is fairly easy to analyze images under such
strict assumptions and both works deal mainly with methods of selecting correct
frames from the TV broadcast.

13



( ) describes a MATLAB prototype of a system for recognizing
Go positions in single images. It is based on Hough transform. The two sets of
parallel lines are found by projecting the Hough space onto the angle axis and
locating two peaks. Small sub-grid is selected in the estimated center of the grid.
The sub-grid is then grown until it fills the whole grid. The stones are classified by
average luminosity around intersection. The output of the prototype consists of
an image with marked grid and stones, no abstract representation of the position
is given. The performance was evaluated on six images that can be downloaded
with the prototype.
The C++ implementation is also available!, but there was no update since
2008. We were not able to compile it, but is clearly intended to only output image
with marked situation, just as the prototype.

( ) suggest to use a genetic algorithm to find the con-
tour of the board in the image. They consider this being the first step towards
extracting the game position from images, but do not deal with subsequent steps
(grid and stone location) at all.

3.2 Available software

There is a lot of software that attempts to automate Go game recording. Unfortu-
nately, most of it is not complete and it is unmaintained and poorly documented.
In this section, we survey available programs, the principles they work on and
their current state of development.

Lot of the applications require to specify grid position manually and there-
fore we cannot compare their performance with our work, which solves a harder
problem.

Rocamgo” only works with video. It finds the corners of the grid (and assumes
the camera does not move). Then it applies the reverse perspective transform
and finds the stones in the normalized image. Unfortunately, the stone-finding
part seems to be very unreliable. In a video with 30 first moves of a game, it
only found 22 moves and their order was entirely wrong. The documentation is in
Spanish, therefore we do not know what principles it works on, apart from what
is obvious from the images displayed when the program is running.

MHImage/BenjaminsBox Go Image Recognition® can analyze video, but
requires user to manually select proper frames, indicate the grid and manually
calibrate stone recognition.

image2sgf' requires user to supply coordinates of the corners of the grid. It
quantizes colors to classify the position. It was last updated in 2009.

http://koti.kapsi.fi/thirsima/gocam/
2http://github.com/Virako/Rocamgo
3http://www.public.iastate.edu/~bholland/project_archive_content/
GoImageRecognition.html
*http://www.inference.phy.cam.ac.uk/cjb/image2sgf .html

14
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ludflu/kifu® finds all closed polygons with 4 sides, it keeps those with area
around median and computes the convex hull. Implementation is not finished,
last update was made in 2012. See Figure 3.1 for result of the computation on
one image from our dataset.

Figure 3.1: Screenshot of ludflu/kifu.

Kifu® starts by finding a big quadrilateral shape. It assumes that is the board,
cuts it from the image and uses Hough transform to find the lines. The program
relies on the assumption of static board and camera. The homepage claims that it
works on video, but the documentation” does not describe how to choose relevant
frames. It seems to be no longer maintained and it can no longer be downloaded.

Go Tracer® is a web application. It asks the user to manually indicate the
position of the grid. After that, it clusters the colors around intersections and
produces a diagram. The color classification seems to be quite unstable.

Kifu-Snap’ is an Android application. The processing is done on the phone.

Go Scoring Camera'’ is an Android application for automatic counting of
the score. Processing is done on a remote server. Both this and Kifu-Snap are
paid and neither one is extensively documented.

Shttp://github.com/ludflu/kifu

Shttp://www.sourceforge.net/projects/kifu

"http://wiki.elphel.com/index.php?title=Kifu:_Go_game_record_(kifu)_generator

8http://go-tracer.appspot.com/

9http://remi.coulom.free.fr/kifu-snap/

Onttps://play.google.com/store/apps/details?id=com. jimrandomh.
goscoringcamera
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Compogo'' was a SGF file editor for Windows, that was able to analyze series
of images, given the position of the grid. The development was stopped in 2003.

Go Game Recorder'” webpage has a video demonstration, but no actual
software or source code. It was last updated in August 2013.

Go Watcher”® webpage also has a video demonstration, but no actual software.

HUhttp://senseis.xmp.net/?CompoGo
12https ://gogamerecorder .wordpress . com
3http://www.gowatcher. com/
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4. Game position recognition

In this chapter we explain our solution and give an example of image analysis.
The most significant difference from previous works is our use of RANSAC in
the analysis of Hough transform and in subsequent proccess of finding the grid.
Another significant improvement is the use of clustering in the stone finding
phrase. We also propose a new method for analysing video.

4.1 Finding the grid

In Figure 4.1 on page 19 we see the input image. It was taken by a webcamera
connected to the computer that can be seen in the top of the image. The computer
was running a Go clock and taking a picture each time a player pressed the key
after his move. This method of recording lets the players to focus on the game
(as tournament players are already used to playing with clock).

First we convert the image to gray-scale by computing luminance for each
point. To reduce the amount of noise in the subsequent Hough transform, we
apply edge detection. We assume the lines are dark on light background, there-
fore we use a simple filter with Laplace operator, followed by a high-pass filter
(Fig. 4.2).

Next we take the Hough transform (Fig. 4.3, p. 20). Bright points in the
Hough transform represent strong lines in the image. The Hough transform is
again followed by a high-pass filter. If the lines are not strong enough, we can
use a filter similar to the one we used for edge detection (only with flipped signs)
between the Hough transform and high-pass filter. This results in small groups of
non-zero pixels, so we find connected components in the image and replace each
of them with its center. This way, we get one point in Hough space for each line
in the image.

The grid is formed by two sets of parallel lines, so we are searching for two
lines in the Hough space. We use RANSAC to find them (Fig. 4.4). We use
standard RANSAC to find the first line, we delete the points that lie on it and
then we use RANSAC again to find the second line. It would be possible to
formulate a model with two lines, but it would need many more iterations to get
the right solution.

In Figure 4.5 on page 21 we see the selected lines over the original image.

Now we find the candidates for the center of the grid. We make use of the
fact that we have most of the lines, therefore most of their intersections. If we
exclude the lines that we already have, the lines that contain most points are the
diagonals of the grid. We use RANSAC to find them (Fig. 4.6).

Once we have candidates for the diagonals, we can generate candidates for
the grid. We take an intersection on a diagonal as a corner of the grid. Because
we have the lines and the other diagonal, we can compute position of remaining
corners and therefore the whole grid. We repeat this for all the intersections on
all the candidates for diagonals and select the best grid (Fig. 4.7, p. 22). The
grid candidates are scored in the same way as models in MSAC: for each of the
intersections found in the previous step we count its distance to the nearest line
of the grid if it is smaller than ¢ and § otherwise. We found that § = 2 works
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well for our application.

4.2 Finding the stones

For each intersection in the grid, we take average color in a 5 x 5 pixels square
around it. In Figure 4.8 we see the average colors distributed in a color space,
where the horizontal axis represent luminance and the vertical axis represent
saturation.

We cluster the colors into three clusters using k-means clustering (Fig. 4.9,
p. 23). The leftmost cluster corresponds to black stones, the rightmost to white
stones. The middle cluster corresponds to empty intersections.

Once we have assigned stones to intersections, we can print the result as in
Figure 4.10.

4.3 Video

In this section, we discuss our proposal for the video-analysis extention of the
work described above. This exceeds the range of the implementation part of this
thesis and its realization is left for future works.

Trying to select precisely the frames in which we can observe the state of
the board between moves and then analizing them without mistakes seems like
a very unreliable approach. Therefore we propose to follow ( )
and use a HMM to model the game. As the state-space is quite large (up to 361"
where M is number of moves in the game), it is not feasible to compute the best
path with Viterbi algorithm. ( ) find a good path with modified
A* algorithm. We propose to search the state space with Monte-Carlo Tree
Search (MCTS, ( )) instead. MCTS was already used in computer Go
programs with great success. There are open-source implementations of MCTS
that already contain Go rules, modifying one to count with probabilities instead
of number of wins should be straightforward.
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Figure 4.1: Original image.
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Figure 4.2: Edge detection
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Figure 4.3: Hough transform (colors inverted).
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Figure 4.4: RANSAC estimate of two lines.
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Figure 4.5: Lines over the original image.
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Figure 4.6: Finding the center.
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Figure 4.7: The grid.
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Figure 4.8: Distribution of the color around intersections.
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5. Implementation

In this chapter we describe Imago, our application for optical recognition of Go
game positions. Section 5.1 offers general description of the application. In
Section 5.2 we discuss high-level technical choices we made. Detailed developer
documentation is distributed with Imago and can be found on the attached CD
(see page 33).

5.1 Imago

Imago is a program for automatic processing of Go images. It takes an image
(or a set of images), finds the board-grid and stones and produces an abstract
representation of the game situation (or a game record).

It supports JPEG, BMP, TIFF (and other) image formats on input. It is
capable of output to ASCII and SGF format. As the process should be fully
automatic, the program is operated from command line. There is, however, a GUI
for manual grid location in case the automatic one should fail.

The program is written mainly in Python, with performance-critical parts
written in C. It is distributed under slightly modified BSD 3-Clause License’.

The source code is available on GitHub?.

5.2 Technical documentation

Libraries and other dependencies

Most of the program is written in Python 2, so the Python 2 interpreter is needed
to run it. Python development files and C compiler are needed to compile our
pcf module.

Beside Python’s standard library, we use PIL® (or a compatible library, like
Pillow") for image manipulation and numpy® ( : ) for
array computations and linear algebra. These libraries should be sufficient for
basic functionality of Imago. For showing intermediate computations and plots,
matplotlib® is needed. Graphical user interfaces are implemented with pygame”.

For capturing images with a camera we use OpenCV*® ( , ).

Conventions

image coordinates The coordinates of the image start in the top left corner
with [0, 0]. Fist coordinate is horizontal, second is vertical.

http://opensource.org/licenses/BSD-3-Clause
?http://github.com/tomasmcz/imago
3http://www.pythonware.com/products/pil/
4http://python-pillow.github.io/
Shttp://www.numpy.org/
Shttp://matplotlib.org/
"http://www.pygame.org/

8http://opencv.org/
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lines We use multiple representations for lines, depending on the context. Lines
represented by two points are easy to draw into image. For geometric computa-
tions (distance from a point, intersection of two lines, etc.) we represent lines by
coefficients of the linear equation in general form (az + by + ¢ = 0). Lines we
get from the Hough transform are represented by pairs (6, d), where 6 is angle
between 0 and 7 and d is the distance from the centre of the image. The distance
can be negative, so that all parallel lines have the same # and differ only in d.

colors There are two different representations of colors, one with discrete values
from 0 to 255 for each channel, the other with floating point number between 0
and 1 for each channel. We mostly use the former, but some libraries (matplotlib,
colorsys from the Python standard library) use the latter, therefore we need to
convert between them sometimes. For gray-scale images we use discrete values
between 0 and 255.

Most important modules

We give a high-level overview of the program architecture here. The detailed

documentation is distributed with the program and can be found on the attached
CD.

imago.py This is the main module of the program. It contains the user interface.
linef.py This module finds the lines in the image.

gridf.py This module finds the grid, given the lines.

intrsc.py This module finds the stones on the grid.

hough.py This module implements the Hough transform.

ransac.py This module implements the RANSAC algorithm.

k_means.py This module implements k-means clustering.

pcf.c This is a Python module written in C, that contains functions that are crit-
ical for fast performance (e.g. the image processing part of Hough transform
that is called from hough.py).

Input and output formats

Imago loads images via PIL. It can open any image format, that is supported by
PIL (JPEG, BMP, TIFF, ...).

Output for single images is a simple textual board representation with ’.’
for empty intersection, B’ and "W’ for black and white stones. See Figure 4.10
on page 23 for an example. For game records, resulting from analysis of image
sequences, we use SGF file format. Single game positions can also be written
with SGF setup syntax.
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SGF

file format SGF? (Smart Game Format) is the de facto standard file

format for Go game records. Each move is recorded by its color (B or W), followed
by coordinates in square brackets. The axes are labeled with letters from a to s.

There are a number of software packages for reviewing and editing Go SGF
files (see article on Sensei’s Library').

G

SZ[19] HA[O] ST[O]

PB[Shusaku] PW[Gennan Inseki]

KM[0.0] RE[B+2]

BR[4d] WR[8d]

C[Gennan Inseki(white) VS Shusaku(black)]

;Blgd] ;Wldc] ;Blpql ;Wloc] ;Blcpl ;;Wlctf] ;Blep]l;Wlqol;Blpel;W[npl]
;Blpol ;Wlppl ;Blopl ;Wlqpl ;Bloql ;Wloo] ;Blpn];Wlqql ;B[ng];W[on]
;Blpm] ;Wlom] ;B[pl] ;W[mp];Blmqgl;Wlol];B[pk];W[1lq];B[1r];W[kr]
;B[1p];Wlkql ;Blqr];Wlrr];Blrs];Wlmr] ;B[nr];Wlpr];Blps];Wlgs]
;B[no] ;W[mo] ;B[qr] ;Wlrm] ;B[rl];Wlgs];B[lo];W[mn];B[qr];Wlqm]

)

Figure 5.1: Example of a SGF file — first 50 moves of a game.

Requirements for input images

We expect that:

the board is standard 19 x 19 Go board, it has dark lines on light back-
ground,

the board is completely visible — it does not exceed the image,

no part of the board is obscured by player’s hands or other object getting
between the board and the camera,

the image is reasonably sharp and the perspective is not exceedingly dis-
torted,

the resolution of the image is at least 640 x 480 pixels, and

the board takes up most of the image — at least half of the shorter dimen-
sion of the image.

We do not have have any special requirements on camera angle and lighting
conditions. If the image meets the criteria above and the position can be rec-
ognized by a human without difficulties, then the computer should be able to
recognize it as well. The program might work even if the image violates some of
the above mentioned conditions, but it is not guaranteed to.

9http://www.red-bean.com/sgf/
Onttp://senseis.xmp.net/?SGFEditor
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6. Evaluation

In this section we evaluate the performance of Imago. We have not found any
other work that we can meaningfully compare our results with (see Chapter 3
for details). Therefore we build our own dataset, that we describe in Section 6.1.
Results of our experiments on the dataset are given in Section 6.2.

6.1 Dataset

There is no standard dataset for measuring performance in optical position recog-
nition in Go. We collected a set of images and manually recorded their game
positions. We hope that this dataset can be used as a basis of comparison for
any future works in this area, despite its small deficiencies: Even though we tried
to make the dataset diverse, we only had two different cameras and two different
Go boards at our disposal. Because Imago was tested on this dataset during de-
velopment, it would have to be expanded or replaced by an independent dataset
to make the comparison with Imago fair.

We also recorded two complete games, with an image taken after each move.
These can be used to experiment with extracting game records from image se-
quences.

6.2 Experimental results

Precision

The dataset consists of 55 images. We run the test 3 times, because parts of the
algorithm are stochastic and results may vary.

mistakes no mistakes
incorrect one two three
grid stone stones  stones

1 0(0.0%) 3(55%) 5(9.1%) 5 (9.1%) 42 (76.4%)
2 0(0.0%) 3(55%) 5(9.1%) 5(9.1%) 42 (76.4%)
3 0(0.0%) 3(55%) 5(9.1%) 5(9.1%) 42 (76.4%)

Table 6.1: Test results on our dataset.

As we see in Table 6.1, Imago gives consistent results. The position of the
grid was always determined correctly. There are a few images in which Imago
misclassified up to three stones, but never more than that. Most of the images (76
%) were classified with no mistakes. If we employed a measure counting with the
total number of intersections, Imago would have 99.9% accuracy on this dataset.

Detailed reports of test results can be found on the attached CD.

We also evaluated a version of Imago based on Cuckoo Search. With high
number of iterations, the number of correctly determined grid positions was also
nearly 100 %, but the analysis took on average 240 seconds for an image.
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Time consumption

On Intel Core2 Quad Q6600 (2.40GHz) CPU it takes 28 seconds on average
to analyze an image from our dataset. Most of the time is spent finding the
diagonals with our variation of RANSAC algorithm. To reduce the time consumed
by this part of the analysis, we can reduce the number of RANSAC iterations.
In Table 6.2 we see how this affects the precision of our system. The time is
reduced linearly with the decreasing number of iterations. Error rate increases
significantly under 200 iterations. In the other direction, error rate decreases
slowly and we need at least 800 iterations to consistenly achieve 0 mistakes on
our dataset. This behavior was anticipated, because 200 iterations is the expected
amount needed to find the correct diagonal line.

iterations 800 500 200 150 100
grids not found 0 (0.0%) 1 (1.8%) 2 (3.6%) 9 (16.4%) 14 (25.5%)
average time [s] 28 20 13 12 10

Table 6.2: The effect of number of RANSAC iterations on time and precision.

Another way to make our application faster is to rewrite our RANSAC im-
plementation from Python to C.
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Conclusion

We examined possibilities of optical position recognition in the game of Go. We
developed a new method based on Hough transform and RANSAC. Based on our
method, we implemented a state-of-the-art application for Go position recognition
in static images. We released the application as free and open-source software. We
also collected a dataset that can be used to measure performance of applications
in Go position recognition.

We are convinced that with just a few adjustments and extensions, this system
can be made so reliable and fast, that it could automatically record tournament
games or even broadcast them over the internet without human supervision.

Future works

Most important future work is to extend this system to analyze video, as we
describe in Section 4.3.

Finding of the grid can be made faster by reimplementing critical parts of the
RANSAC algorithm in C.

The application can be made even more reliable by implementing stone de-
tection based on shape (as we describe Sec. 2.3).

Principles described in this thesis can be used to implement systems for au-
tomatic recording of other games with geometrical board design, such as Hex or
Shogi. For Gomoku and Renju our method will work with little or no modifica-
tion.
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A. User documentation

Installation

Make sure you have all dependencies installed. That is PIL (or equivalent) and
numpy for basic functionality, matplotlib, pygame and OpenCV for additional
features. On a Debian-based system, you can just run sudo apt-get install
python python-dev python-imaging python-numpy python-matplotlib
python-pygame python-opencv. Most of the libraries can be also installed with
PIP, except for pygame, which has to be downloaded from its website.

Once you have all the dependencies, you need to compile Imago C code. Run
make in the imago directory. Imago should now be ready to run.

User guide

Command line interface

Using Imago is easy. Just run ./imago image. jpg to extract the position from
image.jpg. If you specify multiple images, Imago will find the grid in the first
one and extract the game record, assuming that the board position does not
change, and images are in the correct order with one image per move. With
./imago -S <files> the game record is produced in SGF. Run ./imago -h for
help and the list of all options.

Graphical user interface

The goal of this work is to make Go recording as automatic as possible. As
a result, we expect minimum of user interaction. Therefore we decided to design
our graphical user interfaces in rather minimalist way.

Manual grid selection You can select the grid manually, by running ./imago
-m <file> [more files].

Camera, Go timer There are two helper programs to facilitate taking of pho-
tographs during the game. The ./imago-camera command, that takes images at
the press of the key or automatically with selected interval. And ./imago-timer,
that displays Go game clock and takes an image with every clock-press. For de-
tailed instructions on setting the time limits and video device attributes, run the
command with -h option.
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B. The attached CD

The content of the attached CD:

e source code of the implemented software (imago),

developer documentation (documentation),

a dataset consisting of images and text files with corresponding positions
(imago/test_data),

detailed test results (imago/test_data), and

e a PDF file with this thesis (thesis.pdf).

All the materials can also be found on the webpage of the Imago project’.

http://tomasm.cz/imago
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